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Abstract: During the past decade, accumulating evidence from both clinical and experimental studies
has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and
liver, many organs have been identified as secretory tissues for erythropoietin, including the brain.
Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus,
neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new
functions for erythropoietin, which was originally considered to play a crucial role in the progress of
erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple
downstream signaling pathways including STATS5, PI3K/Akt, NF-«B, and MAPK. These factors
may play an important role in inflammation and neuroprogression in the nervous system. This is
particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive
deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways
known to be involved in the treatment of depression makes the erythropoietin-related pathway an
attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may
help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment.

Keywords: depression; major depressive disorder; erythropoietin; EPO; hippocampal; anti-depressant
targets; drug treatment; signaling pathway

1. Introduction

Depression is the leading cause of psychiatric disability across the globe because of its
chronic, treatment-resistant, and recurrent nature; high prevalence; and comorbidity with other
chronic neurological and immune diseases [1]. Thus, depression is of major concern in terms
of personal happiness and social welfare worldwide. Despite comprehensive biological research,
the pathophysiology of depression remains largely unknown. The predominant hypothesis
of the underlying mechanism generating depression rests on a low level of brain serotonin
(5-hydroxytryptamine, 5-HT) and/or alterations of 5-HT receptors [2] in depressed patients. However,
other hypotheses related to neuroinflammation and neuroplasticity are still being considered.
For decades, traditional hypotheses of depression have underpinned research into the etiology of
depression and in vitro testing archetypes; however, many patients continue to suffer from a number of
psychiatric syndromes characterized by depressed mood symptoms and a loss of interest. Clinical data
indicate that complete symptom remission occurs in only 30%—40% of patients whose treatment with
first-line antidepressants is considered successful [3,4]. In addition, most available pharmacological
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treatment options that target causal factors of depression such as 5-HT and brain-derived neutrophic
factor (BDNF) have a significant treatment-onset-response delay and fail to overturn neurocognitive
dysfunction [5,6]. Because of these limitations, novel drugs or combinatorial treatments targeting
different molecular pathways need to be developed.

In recent years, investigators have started to study inflammation and neuronal plasticity as
significant processes underlying depression progression. A growing body of research suggests that
depression is an inflammatory [7,8] and neuroprogressive [9-12] disorder, which could be accompanied
by mitochondrial dysfunction [13] and induction of multiple oxidative and nitrosative pathways [14,15].
Both experimental and clinical evidence show that increased concentrations of pro-inflammatory
cytokines and glucocorticoids, similar to those in chronically stressful situations and in depression,
contribute to the behavioral changes associated with depression [16-18]. Targeting these pathways
may have the potential to yield antidepressant outcomes.

The hematopoietic growth factor erythropoietin (EPO), known for its role in erythroid
differentiation, was first defined as a humoral erythropoietic factor in parabiotic experiments [19] and
in anemic plasma preparations [20] in 1950-1955. Since then, accumulating evidence has indicated that
EPO has multiple targets and actions [21,22] other than those associated with its erythropoietic effects,
similar to many other cytokines and growth factors. It is now widely accepted that EPO not only
affects the hematopoietic system, but is also a multifunctional trophic factor that affects the general
homoeostasis of the entire organism [23]. EPO has direct effects on immune cells [24], endothelial
cells (ECs) [25], and bone marrow stromal cells [26], as well as cells of the heart, gastrointestinal tract,
kidney, muscle, reproductive system [27], pancreas [28], and nervous system [29]. EPO is found to
be produced in the central nervous system by neurons and astrocytes, where it exerts neurotrophic
and neuroprotective effects by binding to EPO receptors (EPOR) in the brain [30,31]. Notably, we
now know that in some kinds of acute and chronic neurodegenerative animal models, systemically
delivered EPO is able to cross the blood brain barrier (BBB) and exhibits neuroprotective effects and
promotion of neuroplasticity [32]. Further, accumulating evidence suggests that EPO has potential
antidepressant effects. For this review, we present evidence that EPO-induced signaling pathways are
involved in antidepressant activity or regression of depression, and describe the potential of EPO as a
novel antidepressant. Ultimately, we hope that these data will lead to the development of EPO and/or
its related signaling molecules as adjunct antidepressant therapies.

2. Expression of EPO and EPOR in the Nervous System

EPO is a 165-amino-acid protein and a member of the type I cytokine superfamily [33]. Several
investigators detected the expression of EPO in other tissues, especially the central nervous system,
presenting challenges of the common sense that only the kidney and the fetal liver were able to
produce EPO [34]. In addition to the kidney, liver, and uterus, other tissues have been identified
as EPO productive and secretory tissues, including peripheral endothelial cells, muscle cells, and
insulin-producing cells [35].

Of all the newly identified EPO sites, the presence of EPO in the brain has generated the highest
levels of interest and enthusiasm for further investigation. In the brain, the major sites of EPO
production and secretion are the hippocampus, internal capsule, cortex, midbrain, cerebral endothelial
cells and astrocytes [36,37]. When EPO was first discovered, it was thought that such a large protein
could not cross the BBB, and several authors suggested that EPO had a paracrine and autocrine
function in some kinds of cells, such as astrocytes [38,39]. However, recent research shows that EPO
does indeed have the capacity to cross the BBB, which protects against a variety of potential brain
injuries, including transient ischemia and reperfusion [40]. However, in the absence of injury to the
BBB, EPO has limited access to the brain [41].

The EPOR, which was first characterized in the 1990s as a polypeptide with a single
transmembrane domain and an extracellular domain containing a WSXWS motif [42], is expressed in
progenitor cells from hematopoietic cells and ECs, skeletal muscle [43-45], and in the brain during the
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development stage and adulthood [46]. Studies have reported EPOR expression in parts of the nervous
system, such as cerebral and spinal cord neurons, hypothalamus, hippocampus, neocortex, dorsal root
ganglia, and nerve axons [47,48]. EPORs classically include two EPOR subunits, but may also associate
with the f-common receptor (cR, CD131) subunit [49,50]. This subunit is a crucial part of cytokine
receptors such as interleukin (IL)-3, IL-5, and granulocyte-macrophage colony-stimulating factor
(GM-CSF) [51], suggesting a potential role of 3cR in EPO signaling pathways. Because (3cR-knockout
mice exhibit normal hematopoiesis [52], it has been suggested that a heteroreceptor complex comprising
both EPOR and pcR could, at least partially, mediate the non-hematopoietic functions of EPO [53].
The receptors involved in tissue protection may differ from the hematopoietic EPORs, because
some EPO derivatives, such as carbamylated EPO, were shown to mediate neuroprotection without
stimulating erythropoiesis [54,55]. Accordingly, it has been suggested that the non-hematopoietic
receptor may be a heteromer consisting of one hematopoietic EPOR together with one or more units
of the BcR [56,57]. However, other studies detected little overlap of 3cR and EPOR expression in the
brain [58] and EPO-mediated protection has been demonstrated in cells that do not express 3cR at
detectable levels [59,60]. Another group of scientists identified ephrin-type B receptor 4 (EphB4) as an
EPO receptor that triggers downstream signaling via STAT3 and promotes recombinant human EPO
(rhEPO)-induced tumor growth and progression [61]. This receptor has been reported to be not only
frequently amplified in some cancers [62], but also over-expressed in the brains of hypoxic-ischemic
rats [63]. Through EphB2 signaling, it activates (3-catenin in vitro and in vivo independently of
Wnt-signaling and upregulates proneural transcription factors, and thus increases adult hippocampal
neurogenesis [64]. Similarly, EphB4 is present and tends to colocalize with EPOR in a subset of cortical
neurons [65]. These findings suggest that EPOR may consist of unidentified heterodimeric receptor
subunits that may vary between different non-hematopoietic tissues.

In the adult human kidney and fetal liver, the release of EPO into the circulation depends upon
tissue oxygen levels and transcription of the EPO gene is mediated via hypoxia-inducible factor
(HIF)-2x [66]. In most tissues, including the brain, hypoxia-dependent expression of EPO and the
EPOR is regulated principally by HIE-1, an a,b-heterodimeric protein which is activated by a collection
of stimulators, such as hypoxia [67,68]. Each member of the HIF family, including HIF-1«, HIF-13,
and HIF-3«, appears to play an important role in the regulation of EPO and EPOR expression to
protect against hypoxic cell injury [69]. Other cellular disturbances, such as hypoglycemia, increased
levels of intracellular Ca®*, or intense neuronal depolarization generated by mitochondrial reactive
oxygen species (ROS), can increase cerebral EPO expression via HIF activation [70-72]. However, the
HIF family is not the only factor that can modify the expression of EPO and the EPOR. The GATA
transcription factors, key regulators of hematopoiesis, such as GATA1 and GATA2, also contribute
to EPO gene regulation [73]. Anemic stress, insulin release and cytokines including insulin-like
growth factor, tumor necrosis factor-« [74], interleukin-13 and interleukin-6 [75,76] can also lead
to increased expression of EPO and the EPOR in both neuronal and non-neuronal cell populations.
Interestingly, a recent study found that hippocampal expression of EPO was decreased in mice by
chronic unpredictable stress, and 5-HT could increase EPO expression in the hippocampus [77], which
is possible related to verbal and visual learning and memory and spectrum of neurocognitive deficits
and mood alterations [78,79]. This finding may highlight EPO as a potential target in the treatment
of depression.

3. EPO-Induced Intracellular Signaling Pathways

The existence of the EPO/EPOR signaling pathway has recently been detected in a diversity of
systems, but its precise role and function in neurobiology are still controversial (Figure 1). EPO acts
via binding to its cell surface receptor, which consists of two EPOR molecules [80]. In non-neuronal
cells, in a similar but more complex manner than in the hematopoietic system, EPO induces tyrosine
phosphorylation of the EPOR and its associated kinase, Janus kinase 2 (JAK?2); in fact, a comparable
system has been addressed in neurons [81]. Endogenous and exogenous EPO can bind and stimulate
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the EPOR to induce phosphorylation of JAK2 [82,83]. Different receptors are involved in each tissue
type and multiple neuroprotective signaling pathways are activated downstream of EPOR/JAK2 in
the nervous system. Activated JAK2 induces various signaling pathways via several adaptor proteins
such as phosphoinositide 3-kinase (PI3K), signal transducer and activator of transcription 5 (STAT5),
nuclear factor kappa B (NF-kB) [84-86] and p42/44 mitogen-activated protein kinase (MAPK) [87].
All of these signaling pathways are known for promoting not only red blood cell proliferation, but
also vasodilation [88], insulin-sensitization [89], and for having antithrombotic [90], anti-inflammatory
and anti-apoptotic actions [91,92]. In particular, STAT5 and NF«B translocate into the nucleus and
serve as transcription factors for Bcl-2 [93] and Bcl-xL [94], which are antiapoptotic genes. Both
components of the signal transduction pathways (e.g., Akt/PKB) and gene products regulated by
activated transcription factors (e.g., Bcl-2 and BclX) have been demonstrated to interfere with apoptotic
processes in the nervous system [95].
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Figure 1. EPO-induced intracellular signaling pathways Erythropoietin and its receptor signaling
through JAK2 activate multiple downstream signaling molecules including STAT5, PI3K/Akt, NF-«B,
and MAPK. These factors may play an important role in inflammation and neuroprogression in the
nervous system.

The occurrence of EPOR splice variants [96] and the possible involvement of the EPOR-f3cR
heterodimer have received limited consideration [97]. Whereas homodimeric EPORs have been
extensively studied, the existence of the heterodimeric complex is controversial and requires further
study. Interestingly, similar signal transduction events, including activation of STAT5, are mediated
via the EPOR-3cR hetero-receptor complex, which requires high local concentrations of EPO to be
activated [98].

3.1. JAK2

JAK2 is a non-receptor tyrosine kinase involved in receptor signaling and hematopoiesis [99].
Both hematopoietic and non-hematopoietic effects are initiated by two tyrosine kinases of the JAK2
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type, leading to trans- and EPOR-phosphorylation after receptor activation [100,101]. All dominant
signaling pathways activated by EPO in erythropoiesis have also been implicated in the regulation
of gene expression leading to neuroprotection [27]. Activated JAK2 induces a variety of signaling
pathways that are known to affect the gene transcription involved in neuronal survival related to
EPO [102,103].

3.2. STAT5

JAK2-mediated EPOR phosphorylation typically enables phosphorylation and dimerization of
STAT transcription factors including STAT1, STAT3, and STAT5a/b [104,105], which translocate to
the nucleus and activate regulated genes. These gene products can then interfere with apoptotic
processes [56,106]. The family of mammalian STAT transcription factors regulates diverse functions
implicated in developmental and homeostatic processes including apoptosis, growth, migration,
proliferation, and differentiation [107,108].

In particular, STAT5, which mediates cellular responses to cytokines, growth factors, and
hormones [109], has been implicated in EPO-stimulated erythropoiesis as well as protective
mechanisms in various non-hematopoietic mammalian tissues including the nervous system [110].
It has been implicated in the control of neuronal cell fate decisions such as differentiation, proliferation,
and apoptosis. Notably, EPO-mediated activation of JAK2/STATS5 leads to up-regulation of the
anti-apoptotic Bcl-XL and Bcl-2 genes, thereby protecting proerythroblasts from apoptosis [111,112].

3.3. NF-kB

NF-«kB consists of homo- and hetero-dimers of five members of the Rel family: NF-«B1 (p50/p105),
NE-kB2 (p52/p100), RelA (p65), RelB (I-REL), and c-Rel [113]. NF-kB can be activated by the
phosphorylation of a tyrosine residue of the p50 subunit which then translocates into the nucleus after
the release of IkB, and is known to be crucial factor in the differentiation of neuronal cells [114,115].
As NF-kB is known to be a downstream regulator of tumor necrosis factor (TNF)-q, it is particularly
important in the neuroinflammatory processes involved in depression [116]. Given its major role in
mediating inflammatory processes, many researchers have suggested that NF-«B is not only present in
various immune cells but also on the surface of the BBB [117]. In the brain, proinflammatory cytokines
activate both neuronal and non-neuronal cells (e.g., microglia, astrocytes, and oligodendroglia) via the
NF-«B cascade in a similar manner to that occurring in the peripheral inflammatory response [118].
NF-kB activation is regulated by glucocorticoids which inhibit NF-kB activity, and decreases the
activation of some pro-inflammatory cytokines in turn [119]. NF-«B is crucial for mediating the
stress-induced inhibition of neurogenesis and at least some depressive behavior [120]. EPO-related
production of forebrain neural stem cells (NSCs) [121] and prevention of neuronal apoptosis [122,123]
require activation of NF-«B.

3.4. PI3K/Akt

PI3K/ Akt signaling has been identified as the major transduction pathway for EPO-mediated
cell protection in various mammalian non-hematopoietic tissues [124,125]. Previous studies have
used the PI3K inhibitor LY294002 to prevent Akt phosphorylation and abrogate the protective effects
of EPO [126-128]. The PI3K/ Akt signal transduction pathway is known to play an important role
in regulating major cellular processes, such as cell growth [129], proliferation and survival [130],
cell metabolism, and autophagy [131]. There is also evidence that EPO can promote axonal growth
and branching via activation of the PI3K/Akt pathway in polarized hippocampal neurons [132,133].
However other scientists who have studied mammalian neuroprotective and neuroregenerative
signal transduction pathways for their contribution to rhEPO-mediated neuroprotection in locust
brain neurons have demonstrated an involvement of JAK and STAT, but not of PI3K, in beneficial
mechanisms that interfere with apoptotic processes [110]. This finding suggests that the pathways
affected by EPO and its derivatives may be slightly different across species.
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EPO markedly enhances the oxidative stress-sensitive activity of Akt and prevents the activation of
microglia, which was one of the most important cellular components of neuroinflammation [134-136].
Since the inhibition of Akt phosphorylation blocks the cellular protective effects induced by EPO,
Akt activity appears to be vital for EPO-mediated tissue protection [137]. Akt can also inactivate Bad,
a member of pro-apoptotic Bcl-2 family, through phosphorylation of its serine residues [138]. EPO is
linked to Bad through the anti-apoptotic Bcl-2 family member Bcl-xL. Studies have suggested that
EPO was able to prevent cellular injury through maintaining the expression of Bcl-2 and Bcl-xL and
altering the Bcl:Bax ratio [139]. EPO-induced activation of Akt also activated by phosphorylation of
endothelial nitric oxide synthase (eNOS) [140]. Interestingly, Akt can significantly increase NF-«B and
HIF-1 activation, resulting in increased EPO expression [141].

3.5. ERK/MAPK

The mitogen-activated proteins kinases (MAPKSs) are a family of evolutionarily conserved
molecules which play crucial roles in cellular signaling pathways and gene expression, consisting
of three major members: Extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal
kinase [142], which represent three different intracellular-signaling cascades. Phosphorylation
activates MAPKSs, which transduce a broad range of extracellular stimuli into various intracellular
responses through both transcriptional and non-transcriptional regulation [143]. Initiation of the
ERK/MAPK cascade involves activation of three kinases, Ras, Raf, and MAPK/ERK kinase [144],
and the ERK/MAPK pathway is customarily thought to play important roles in cell proliferation and
differentiation [145]. Long-lasting activation of MAPK activity is known as a key mediator of cell
differentiation [146], invariably involving translocation of ERK from the cytoplasm to the nucleus [147].

It is interesting to note that the MAPK family is involved in differentiation of neuronal
cells [148,149] and astrocytes [150], and has been indicated to produce EPO, stimulating neuron
or oligodendrocyte differentiation and accelerating the proliferation of astrocytes. MAPKs enter the
nucleus and induce transcription of target genes involved mainly with inhibition of apoptosis and
cell proliferation. In contrast with erythroid cell types, the EPO-mediated signaling pathways are less
well characterized for non-erythroid tissues and, therefore, limited information on the mechanisms
underlying the EPO-induced antidepressant effects is available.

4. EPO in the Treatment of Depression

The relationship of EPO and depression has been investigated in a number of studies. According
to a systematic review, beneficial effects of EPO on hippocampus-dependent memory function
and on depression-relevant behavior were observed in some animal and clinical studies, thus
highlighting EPO as a candidate agent to manage cognitive dysfunction and mood symptoms in
the future [151]. In some animal studies, EPO treatment can have some antidepressant effects,
discriminable both morphologically and behaviorally [152]. Various behavioral tests, such as the forced
swim test, novelty-induced hypophagia (NIH) test and novel object recognition test, proved useful in
demonstrating improved cognitive function in rodent models (rat and mouse) following treatment
with EPO [153]. Another study indicated that there was no effect on memory and depression- or
anxiety-like behaviors three days after a single administration of EPO, but there was improvement
of spatial and object recognition memory [154]. In additive, EPO in the brain can be induced by
electroconvulsive seizures (ECS) and independently exhibits antidepressant-like effects according to
the forced swim and NIH tests. Finally, analysis for gene expression profiles revealed that EPO alters
the expression of neurotrophic genes such as BDNF [155,156].

In humans, beneficial effects of EPO on cognitive functions have been recognized as early
as around the time of introduction of EPO for the clinical treatment of renal anemia [157-159].
In healthy volunteers, a single high dose of EPO reduced the neuronal response to fear one
week after administration without evoking any erythropoietic alterations [160]. Following EPO
administration, along with increased neural and cognitive processing of facial expressions, a short-term
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effect of improved mood symptoms was reported in the first three days, which is similar to the
neuro-behavioral effects obtained in acute administration of selective serotonin reuptake inhibitor
(SSRI) antidepressants [161]. Three days post-administration of EPO also showed decreased neural
responses to negative vs. positive pictures in a network of sites including the hippocampus [162].
However, another study showed that ARA290, an EPO-derived peptide, tended to lower the
recognition of facial expressions of happiness and disgust and had no effects on mood and affective
symptoms [163]. A double-blind study comprising 19 patients with acute depression provided
evidence that EPO was found to reduce left amygdala-hippocampal response to fearful stimuli [164].
Some randomized controlled studies indicated EPO may provide a therapeutic option for patients
with mood disorders [164-167]. Recently, clinical evidence of the procognitive potential of EPO has
been proved by a randomized controlled trial (RCT) involving moderately depressed patients with
treatment-resistant depression (N = 40) [168]. EPO also down-regulated plasma BDNF levels in
patients with treatment-resistant depression (TRD; N = 40) [169]. Taken together, these seven clinical
findings (Table 1) suggested that EPO may provide a therapeutic option for patients with depression.
Nonetheless, all of these clinical studies have some limitations, such as the small sample sizes of
patients, concurrent use of antidepressant medications in many patients, incomplete examination of
mood and arousal changes, and unclear baseline data.

The mechanism of depression is very complex. A shrinkage of the hippocampal volume in
depressive patients [170] and a decreased number of astrocytes and neurons in the prefrontal cortex
and striatum [171] associated with depression were observed in some clinical and experimental
studies. Scientists have examined and advanced the theory that depression is an inflammatory
disorder [172,173] and is related to neuroprogression, especially in the hippocampus [174]. Indeed,
one hypothesis that has recently gained traction suggests that depression is caused by a breakdown
in neural plasticity arising from on-going inflammatory processes and an overactive stress-response
system [175,176], which leads to structural and functional abnormalities in the fronto-limbic brain
circuitry [177]. Based on the pharmacological effects of EPO in the nervous system, it might, for
example, attenuate neuroinflammatory processes [178], and improve hippocampal neurogenesis [179].
Consistent with the above theory of depression, there is reason to believe that EPO pathways could be
a potential target for the treatment of depression.

4.1. Inflammation in EPO-Related Treatments

A recent meta-analysis study indicated that depression is characterized by increased levels of
IL-6 and TNF-« in plasma, which is interpreted to indicate that depression may be considered as
an inflammatory disorder [180]. It was also shown that systems related to the mitigation of the
inflammatory response may be potential therapeutic targets for mood disorders [181]. Non-steroidal
anti-inflammatory drugs (NSAIDs), such as acetylsalicylic acid and celecoxib, have an adjunctive effect
when combined with SSRIs in the treatment of clinical and experimental depression [182].

EPO is considered to have potential anti-inflammatory capacities, especially as evidenced by
its successful application in a number of animal models of chronic inflammation [183,184]. EPO
impairs the formation of pro-inflammatory factors such as TNF-«, IL-6, IL-12/IL-23 subunits and
nitric oxide (NO) via induction of inducible NO synthase (iNOS) in macrophages [185]. It also has
anti-inflammatory effects by reducing reactive astrocytosis and microglia activation and the number
of immune cells in the injured sites [186,187]. The mechanisms of these anti-inflammatory effects
have not been investigated widely; however, a recent report showed that inhibition of the NF-«kB p65
subunit is likely to be essential [188].
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Table 1. Clinical study on the antidepressant effect of EPO.
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Author EPO Form Subject ]?r}lg . Randomized Double-Blind Main Finding Limitations Safety
Administration
1, pharmacological fMRI studies in
During faces processing EPO general is the possibility that drug
R effects on neural response may be
enhanced activation in the left .
. confounded by non-specific effects
amygdala and right precuneus to 1 li d bral lood
ha and fearful expressions on neural coupling and cerebra Blood pressure
Kamilla W.  Erythropoietin 24 . o ) hemodynamics. 2, more detailed and subjective
- . healthy This was paired with improved A
Miskowiak (40,000 S I . . examination of the mood and state were
- volunteers  injection once Y Y recognition of all facial expressions, . .
etal International (N = 24) in particular of low intensit arousal changes seen following monitored for 2 h
(2008) [161] Unit, IU) B par ensity EPO and their relation to changes  following the
happiness and fear. This is similar . . . o
. . in emotional processing observed  injection.
to behavioral effects observed with . .
. . three days post-administration
acute administration of
serotonergic antidepressants should be performed. 3, the
& ’ clinical effect in patients suffering
from depression is unknown.
ARA290-treated individuals
displayed lower neural responses
to happy faces in the fusiform
gyrus. ARA290 tended to lower After administration,
the recognition of happy and 1, the limited clinical potential of the participant
disgust facial expressions. EPO to treat depressive symptoms ~ was monitored for
Hilal health Although ARA290 was not in non-anemic patients, due to the 10 min. Dose
. ARA290 Y s associated with a better memory hematopoietic actions of EPO with  selection was
Cerit et al. volunteers  injection, once Y Y i . . . .
(2008) [163] (2 mg) (N = 36) for positive words, it was repeated administration. 2, the based on previous

associated with faster
categorization of positive vs.
negative words. Finally, ARA290
increased attention towards
positive emotional pictures.

No effects were observed on mood
and affective symptoms.

human proof-of-concept studies
were conducted in relatively
small samples.

studies in humans
in which no safety
concerns

were reported.
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Author EPO Form Subject l')r'ug . Randomized Double-Blind Main Finding Limitations Safety
Administration
EPO reduced neural response to
negative vs. positive pictures three
days post-administration in a
network of areas including the
hippocampus, ven~tromed1a1 Blood pressure,
. prefrontal and parietal cortex. . .
Kamilla W. 1, an exploratory study inasmall ~ well-being and
. . .. depressed After the scan, EPO-treated K . L
Miskowiak  Erythropoietin R . ) i patient sample. 2, The majority of subjective state
patients injection once Y Y patients showed improved . . .
etal. (40,000 IU) . patientswere also taking was monitored
(N=17) memory compared with those that . LS .
(2009) [162] . antidepressant medication for 2 h following
were given placebo. The effects o
. the injection.
occurred in the absence of changes
in mood or hematological
parameters, suggesting that they
originated from direct
neurobiological actions of EPO.
EPO reduced neural response to
fearful vs. happy faces in the 1, an exploratory study in a small
amygdala and hippocampus, and  patient sample. 2, the majority of
to fearful faces vs. baseline in patients were taking Following
superior temporal and antidepressant medication. 3, the ~ EPO/saline
Kamilla W. depressed occipitoparietal regions three days  current study used a administration,
Miskowiak  Erythropoietin Etients injection once Y Y after administration in acutely between-groups design, and it is blood pressure,
etal. (40,000 IU) ?N - 19) ) depressed patients. This was unknown whether baseline well-being, and

(2010) [164]

accompanied by a specific
reduction in the recognition of fear
in EPO-treated patients after the
scan similar to the effects on face
recognition seen with
antidepressant drug treatment.

differences existed between the
two groups. 4, the application of
EPO in the treatment of
neuropsychiatric disorder may
have some undesirable effects.

subjective state
were monitored
for2 h.
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uthor orm ubject . . andomize ouble-Blin ain Findin imitations afet
Auth EPO F Subj Am;ﬁﬁiuwn Randomized Double-Blind Main Finding Limitati Safety
1, the extensive exclusion criteria
may limit the ability to generalize
our findings to clinical practice.
2, the EPO-associated increase in
- red blood cell levels could

Ezlziggévgﬁ:;)a;?ei:g?%gg confound the interpretation of the

over saline at week 9. However effects of EPO as neural in origin.

EPO improved BDI a.n d ’ 3, they did not screen for or

WHOQOL-BREEF, and this was :Ctlhuic;i:;ﬁgo;:éi i:;illtleiligrjer Weekly monitoring

maintained at follow-up week 14. subsample of patients who were of blood tests

EPO enhanced verbal recall and P P and any side

. -, . . not representative for the target
Kamilla W. L. recognition, which was sustained . K effects was
- . . .. depressed injection . population of treatment-resistant
Miskowiak  Erythropoietin . at follow-up. Exploratory analysis . . performed by a
et al (40,000 IU) patients weekly Y in patients fulfilling depression patients. 4, their study may not hysician not
: ! (N =40) (8 weeks) P & dep have been adequately powered to phy

(2014) [168]

severity criteria at trial start
revealed ameliorated HDRS-17 in
EPO vs. saline groups, which was
sustained at week 14. Exploratory
analysis in the complete cohort
showed that EPO reduced
depression composite at weeks

9 and 14.

detect a significant effect on
primary outcome measure,
although a positive signal was
apparent on the additional
depression-relevant outcomes and
explorative score of depressive
syndrome severity. 5, patients had
been treated for years without any
improvement, and that a treatment
period of eight weeks is very short
in such chronic,

recurrent condition.

involved in
outcome
measure
assessments.




Int. ]. Mol. Sci. 2016, 17, 677

Table 1. Cont.

11 of 24

Author EPO Form Subject l')r'ug . Randomized Double-Blind Main Finding Limitations Safety
Administration
acszgzﬁ);:eec? valltt: saline, EPOwas 1, their cohort included both Blood tests were
mood-independent memory patients with TRD and BD, since taken on a
improvement and reversal of brain ;}:?fiz ié?\(t)i(;? jllf}?éieis rr;i/i;ﬁvolve weekly basis
Kamilla W. . matter loss in the left . &1 P Y from baseline to
- . .. BD/TRD injection . . overlapping, pathogenic processes.
Miskowiak  Erythropoietin . hippocampalcornu ammonis 1 to week 10
patients weekly Y Y . . 2, three complementary methods
etal. (40,000 IU) cornu ammonis 3 and subiculum. . (two weeks after
(2015) [166] (N'=69) (8 weeks) Using the entire sample, memory to capture different aspects of treatment
improvement was associated with hippocampal volume changes completion) and
subfield hippocampal volume have their own limitations, and again in
increase mglg endel:;t of reflect different wgeek 14
mood Changep structural measures. ’
1, they did not register daily
EPO down-regulated plasma physical exercise level, and since
BDNEF levels in patients with TRD EPO. is well @own for its poFential
(mean reduction at week 9 doping capacity, the change in
(95% CI): EPO 10.94 ng /L Eg\elfsgzlfeigifedlsfe?;; tfhe Blood tests were
Maj Vinberg Erythropoietin BD / TRD injection (4.51-21.41 ng/ L); mean increase intervention group. 2, the taken on a .
etal. (40,000 1U) patients weekly Y Y at week 9: Saline 0.52 ng/L, relatively few particivants is a weekly basis
(2015) [169] ’ (N=83) (8 weeks) p=0.04 (—5.88-4.48 ng/L) p = 0.04, y tew particip from baseline to

partial n2 = 0.12). No significant
effects were found on BDNF levels
in partially remitted patients with
BD (p = 0.35).

limitation. 3, patients received
weekly intravenous infusions of
either EPO or saline for eight
weeks (weeks 1-8) in addition to
their current

antidepressant medication.

week 10.
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4.2. Neuroprogression in EPO-Related Treatment

Neuroprogression is defined as the progression of neurodegeneration, apoptosis, and reduced
neurogenesis, and structural, functional, molecular, and cellular modifications and neuronal plasticity;
together, these phenomena most likely result from inflammation and other factors [189]. Depressive
disorder is related to some structural brain changes, such as decreased hippocampal volume [190],
which might come from a stressors-caused decrease in neurogenesis [191,192].

EPO has been implicated in the accommodation of neuroprogression and may play an important
antidepressant role in the progress of depression. According to some experiments, EPO improved
antidepressant and anti-anxiety-like effects in the forced swim test, which related to significantly
increased hippocampal neurogenesis [193]; however, no evidence of a general EPO-related increase
in mobility was observed in the open field test [155]. Systemically administered EPO crosses the
BBB in therapeutically effective concentrations [194] and exerts neuroprotective and neurotrophic
effects [195] in traumatic, hypoxic-ischemic, excitotoxic, and inflammatory brain damage [196,197],
and in neurodegenerative and neuropsychiatric conditions [198-200]. These morphological effects of
EPO are caused by direct action on neurons through EPO-EPOR pathways and are strongly correlated
with brain-derived neurotrophic factor (BDNF), which plays a crucial role in neuronal survival and
proliferation [201]. BDNF and EPO share a common set of intracellular signaling pathways including
the PI3K and MAPK cascades [202-204]. EPO was reported to induce BDNF expression, inducing
potential neuroplastic effects [154].

5. Conclusions and Perspective

Depression is a global issue and the leading cause of burden and disability worldwide. This very
complex psychosocial and biological phenomenon contains intricate neurophysiological, behavioral,
psychosocial, and affective constituents. The underlying mechanisms of depression have been
difficult to illuminate because of the heterogeneous nature and the different etiologies of the disease.
One potentially valuable theory states that not only the alterations in the volume of the hippocampus,
prefrontal cortex, thalamus, and basal ganglia, but also inflammatory conditions are related to the
causative mechanisms of depression. These findings suggest that targeting several pathophysiologic
mechanisms rather than neurotransmitter systems specifically holds promise for developing innovative
therapeutic strategies.

During the past decade, accumulating evidence has indicated that EPO may have potential as
a treatment for depression, suggesting that endogenous cytokines may play an important role in
the pathogenesis of depression. In addition to the kidney, liver, and uterus, many organs have been
identified as secretory tissues for EPO, including the brain. The EPOR is expressed in cerebral and
spinal cord neurons, and in the hypothalamus, hippocampus, neocortex, dorsal root ganglia and
nerve axons. The discovery of EPO and EPOR in the nervous system highlights new functions for
EPO, which was only considered to play a crucial role in the progress of erythroid differentiation.
Mounting experimental evidence suggests that EPO treatment, which has clearly shown antidepressant
and procognitive effects, may alleviate inflammation and neuroprogression in depression models.
Therefore, exploring EPO-EPOR and their downstream signaling pathways may greatly improve
our understanding of the pathogenic mechanisms that underlie depression and the molecular basis
of its treatment. EPO-EPOR signaling through JAK2 activates multiple downstream signaling
pathways including STAT5, PI3K/Akt, NF-kB, and MAPK. These factors may play an important
role in inflammation and neuroprogression in the nervous system, particularly in the hippocampus,
which is heavily involved in the development of depression. Unfortunately, to date there have been few
reports about the relationship between EPO and depression. Thus, the role of the EPO-EPOR pathway
in the treatment of depression makes it an attractive target for the development of new approaches to
treating depression. This will also help to identify new targets for pharmacological intervention.

However, with the numerous effects attributed to EPO, several aspects of potential EPO treatment
for depression must be clarified.
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First, in the coming years, it will be crucial to evaluate the level of the expression of EPO or EPOR
and to inhibit their downstream effectors to unequivocally define the role of EPO-EPOR pathways
in depression processes. EPO antibodies and EPOR antagonists should be used in studies of the
relationship between depression and EPO-EPOR pathways. Further research is necessary to determine
the exact role of EPO-EPOR pathways in the progress of depression, including activation of EPO and
specific subtypes of its signal transduction. In fact, this will likely be an active area of research for
many years to come. As has been reported, derivatives such as carbamylated erythropoietin (CEPO)
and asialo-EPO may also have neuroprotective functions. These derivatives need to be examined in
greater detail. Development of new therapeutics to treat depression provides significant evidence of
our new understanding of its homeostasis and pathophysiological features.

Second, EPOR is widely expressed in several tissues, including the muscle, liver, heart, and spinal
cord, where it might be involved in physiological and pathophysiological processes, including tissue
protection and immunomodulation. As we know, depression is associated with many neurological
disorders and other chronic physical health conditions, such as diabetes, chronic liver disease, heart
disease, and cardiovascular disease. It is, therefore, possible that studying EPO-EPOR pathways will
help to explain the connection between depression and other disabilities.

Third, it is unclear whether the EPO-triggered signaling cascades differ across tissue, whether
one cell type expresses both types of EPORs, and how these types of EPORs might differentially affect
EPO-induced cellular and intracellular pathways and effects. Whether some other cytokines such as
interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF) or IL-5 can signal
through the EPOR-3cR complex, interfere with, or modify EPO signaling pathways remains to be
unknown. In the future, animal models, such as gene knock-in and knock-outs of EPOR or 3cR should
be developed to study these issues.

Finally, despite the promising evidence for EPO as an additional treatment for mood disorders,
it is important to acknowledge one major limitation of EPO. The hematopoietic action of EPO with
repeated administration would necessitate close monitoring of hematocrit and thrombocyte levels
and, potentially, blood-letting in non-anemic patient populations. Some studies show that exogenous
EPO-treated cancer patients have been associated with tumor progression [205-208], which suggests the
potential risk of the use of EPO. However, with further research discerning between the mechanisms
of its antidepressant and hematopoietic effects, we may be able to develop EPO derivatives with
antidepressant effects that lack a hematopoietic function.

In conclusion, research to identify compounds and therapeutic strategies targeting EPO pathways
may be essential for the treatment of depression. Furthermore, extensive clinical trials are required to
evaluate more effective and safer drugs related to EPO pathways in humans.
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